arXiv:2505.20524v2 [cs.LG] 24 Oct 2025

Towards Fully FP8§ GEMM LLM Training at Scale

Alejandro Hernandez-Cano* Dhia Garbaya*
EPFL EPFL
alejandro.hernandezcano@epfl.ch dhia.garbaya®@epfl.ch
Imanol Schlag Martin Jaggi
ETHZ EPFL
ischlag@ethz.ch martin. jaggiQepfl.ch
Abstract

Despite the significant potential of FP8 data formats for large language model
(LLM) pre-training, their adoption has been limited due to challenges in maintain-
ing stability at scale. Existing approaches often rely on suboptimal fine-grained
FP8 kernels or fall back to higher-precision matrix multiplications (GEMMs)
in sensitive components, such as attention projections, compromising potential
throughput gains. We introduce a new class of LLM architectures that, for the first
time, support FP8 computation for all GEMMSs within transformer blocks during
both forward and backward passes. This enables unprecedented throughput gains,
particularly at scale, while matching the downstream performance of standard
BF16 training. Our architecture design reduces large outlier activations, promoting
stable long-term FP§ training. In addition, we identify key metrics to monitor
low-precision training and predict potential future divergences.

1 Introduction

Recent progress in the training of transformer-based Large Language Models (LLMs) has significantly
advanced the field of language modelling. Scaling up both model size and training data remains
a reliable strategy to enhance their performance [15]. Consequently, state-of-the-art models are
typically trained at scale using extensive datasets [1} [7, [25]], requiring substantial computational
resources—often in the order of millions of GPU hours.

Thus, the development of efficient training techniques has become increasingly essential. One of
the main research avenues for efficiency is the use of lower-precision number formats to accelerate
training on appropriate hardware accelerators. Recently, the use of 8-bit floating-point (FP8) formats
has shown promising results [3} 16, 24]]. However, the widespread adoption of current approaches
is still limited due to suboptimal throughput benefits. One cause of slowdowns is the use of higher
precision in those General Matrix Multiplications (GEMMs) which are most sensitive, such as
attention score computation, while another issue is the overhead caused by more granular FP8
scaling strategies. One of the key challenges in 8-bit LLM training originates from the relatively
narrow dynamic range offered by FP8 formats and thus higher risk of underflows and overflows,
especially with the prevalence of large outlier features observed in the LLM’s neural activations
during training [4} 30, 9. We formalize the effect of outliers on quantization later in Appendix [C]
To mitigate this issue, modern FPS training recipes utilise various scaling techniques before casting
from higher-precision formats—typically BF16 [14] for activations—to FP8 formats used in matrix
multiplications. These scaling approaches help maximize the effective use of FP8’s limited dynamic
range, reducing the risk of underflows and overflows.

*Equal contribution.

39th Conference on Neural Information Processing Systems (NeurIPS 2025).

https://arxiv.org/abs/2505.20524v2

Recent work has introduced promising FP8 training recipes by employing multiple scaling factors
per single tensor [3]], allowing for a finer and more precise casting to lower precision. Yet, this comes
with an efficiency overhead, diminishing the large gains initially expected from using FP8. Another
strategy involves adjusting the standard SwiGLU-based transformer architecture [28] to prevent
emergent outliers from occurring [6]. This area of optimization remains underexplored, as most
works focus on FP§ GEMM:s within the linear projections within the transformer, while maintaining
higher precision for other GEMMs, namely those involved in the dot product attention mechanism.
We refer to such training strategies simply as FP8 training. We label the approach of also including
FP8 attention computation as FP§DPA.

In this paper, we introduce FOG: the Fast and Outlier-Guarded set of LLM architectures specifically
designed to mitigate large activation outliers and enable efficient large-scale FP8 training with low-
overhead scaling strategies. For the first time to our knowledge, this approach enables FP8 GEMMs
not only in the linear projection, but also within the attention mechanism of each transformer block,
achieving unprecedented throughput improvements of up to 43% in the 8B parameter model scale,
while maintaining equivalent downstream performance compared to higher precision baselines. In
addition, we present a comprehensive recipe for monitoring, explaining, and predicting training
instabilities that might not surface in the early stages of training. This approach provides researchers
with greater confidence in the long-term stability of FPS training recipes, reducing the need for costly,
full-scale experiments when using new architectures. Furthermore, we provide an interestingly useful
observation about larger models’ tendency to diverge later in training with FP8.

Our key contributions are the following:

* We introduce the FOG set of architectures, designed to minimise outlier features during
training. Our recipe allows stable training with FP8 computation of all GEMM:s inside the
transformer blocks, surpassing the throughput of the standard BF16 approach by up to 43%.

* Our design achieves equivalent quality results to BF16 baselines, while providing a signifi-
cant speed-up. We empirically attest both performance and stability on various model sizes
(0.4B, 1.5B, 8B) and data regimes up to 15x the Chinchilla optimal data budget [12].

* We show the flexibility of FOG design as it can be adapted to several architectures including
various families of activation functions and even Mixture-of-Experts (MoE) settings.

 Using kurtosis, we provide a recipe to judge an architecture’s robustness to FP8 training
in long data regimes using diagnostics from shorter runs. We use this recipe to explain
previously observed divergence behaviour at scale, and offer a wide range of empirical
results to demonstrate its usefulness. We believe this contribution allows FPS§ training
insights on future transformer variants developed by the community, without the need for
expensive full-scale experiments.

2 Background

Due to its limited dynamic range, FP8 tensors are particularly prone to overflows and underflows
when representing extreme values. The FP8 formats come in two standard forms [20]]: E4M3 and
ESM2, each with different trade-offs. The first format, with four exponent bits and three mantissa bits,
offers higher precision. In contrast, the ESM?2 format, with five exponent bits and two mantissa bits,
provides a broader dynamic range at the cost of reduced precision. Existing large-scale distributed
training frameworks such as DeepSpeed or Megatron [29] leverage this distinction by employing
E4M3 for tensors in the forward pass to maintain precision and ESM2 for the backward pass to handle
the broader dynamic range of gradients effectively. Nonetheless, both formats have much lower
representation capacity than half- or single-precision formats. Therefore, various scaling strategies
are applied when casting tensors down to FP8 in order to make more efficient use of this restricted
range. These strategies are mainly tensorwise and fall into two main categories: delayed scaling
and just-in-time scaling (JIT). Delayed scaling uses information from previous training iterations to
determine the scaling factor of the tensor for the ongoing iteration, requiring a single pass on the data
along with storing a short history of useful metrics observed across an interval of past iterations. JIT
scaling, on the other hand, can hinder the gains from using FP8 because it uses the distribution of
the tensor being produced—in higher precision—to compute the scalar, before casting the input and
performing the GEMM in FPS, requiring at least two passes through data. A more recent approach
aims to make scaling more robust by using multiple scaling factors per tensor, allowing different

tensor blocks to have different scaling factors [27} 3]]. This leads to a more precise FP8 casting within
each block. Naturally, this finer scaling strategy induces a larger overhead on such GEMM kernels
relative to the tensorwise delayed scaling recipe.

Ensuring stable FPS§ training remains challenging. It becomes problematic when certain activations
produce large outliers during training, making such a low-precision representation unfeasible and
leading to rapid divergence. Prior work introduced the term massive activations, a phenomenon
similar to outlier features, and showed their crucial role in LLMs’ capabilities [30]. Understanding
the dynamics of these outliers is crucial for explaining FP8 divergence and identifying the network
components responsible for them. One notable source of such outliers’ amplification has been
identified to be the widely adopted SwiGLU (Swish Gated-Linear-Unit) activation function [28]].
Replacing it with a scaled variant, SmoothSwiGLU regulates large outliers and was shown to stabilize
previously diverging FPS training runs and ensure their convergence [6].

Further examination has shown that not only is SwiGLU an outlier amplifier, but Gated Linear Units
(GLUs) in general, as well as pre-normalization layers, suggesting that improper signal propagation
is the root cause of outliers [9]. Removing these components and equipping transformers with QK
entropy regularization mechanisms such as QK RMS Normalization [10]], producing the Outlier
Protected (OP) architectures [9], has been shown to diminish late-stage outliers observed by orders of
magnitude, while providing equivalent prediction quality. While OP architectures were shown to be
beneficial for post-training quantization, its use for FP8 pre-training remains unexplored. Finally, an
alternative to pre-normalization layers are post-normalization layers [18]. Long data regime trainings
have confirmed their superiority in terms of training stability with the standard BF16 mixed precision
training [21].

3 FOG: Fast and Outlier-Guarded FP8-suited architectures

Our architecture base, as illustrated in Figure[I] makes key changes

to widely-used transformer networks [32]. The pre-normalization / T ™
block before the attention mechanism and FFN is removed. In addi- FOG S E—
tion, a normalization mechanism in the attention is added to prevent
entropy collapse, a key training instability in transformers [34]], from I,—___I:r:{a_r____‘
occurring. This mechanism can take the form of a QK RMSNorm ! __¢ i
block [[10]: ; !

N () yOX rms(x) Il l‘“::ar‘“—":

= s = —,

v rms(x) VD T
where x € RP, 4 € R¥ is the learnable gains vector, ® is the
Hadamard product and || - ||2 is the £;-norm. Alternatively, the
tanh, () := tanh(ax) element-wise activation function, where r e
a € R is trainable, can be applied to query and key tensors. This : !
activation has been shown to have regularization effects akin to i i
RMS normalization blocks [35]], while being computationally more : ((i) (ﬁ =)) :
efficient. = :

NG —

Further, the input of the first transformer block is scaled by o~
to maintain unit variance activations at initialization, where o is Fjoyre 1: FOG transformer.
the chosen standard deviation of the network’s random initializa-

tion. Finally, to enhance performance, a learnable normalization

block is applied before the residual connections. This takes the form of a LayerScale [31] block,
LayerScale,, (x) := v ©® x, where v € RP is a learnable gain vector, or an RMSNorm block, result-
ing in a post-normalized architecture [18]]. In both cases, the learnable gains vector is initialized to
1/+/num_layers and keeps the residual branch unnormalized, allowing proper signal propagation [9].
Our architecture suite is specified in Table[I] and further details are available in Appendix [B}

While the OP architecture already offers several guards to prevent large outliers from occurring, we
observed that it remains an impractical choice for FP8DPA training. In Section|5.1|we show that, like
all other architectures tested, it suffers a fatal loss divergence early during training. We isolate the two
components responsible for OP’s incompatibility with FP8DPA training: the trainable QK RMSNorm
gains vector «y, and the lack of any normalization. We identify the use of post-normalization as not
prone to the outlier tendency pre-normalization networks have.

Model QK-Regularization Activation = Normalization

FOG-max RMSNorm* xIELU [13] Post-RMSNorm
FOG-opt RMSNorm* GeLU Post-RMSNorm
FOG-flash Tanh* GeLU Post-RMSNorm
OP [9]] RMSNorm GeLU LayerScale

Table 1: FOG architecture suite compared with OP. Regularizations marked with * indicate that
gains are not trainable. Each variant offers different trade-offs, with FOG-flash having the higher
throughput and FOG-max observed to have better downstream quality.

—— FOG-opt op OP-+frozenQK
1.50 2.00

4.25
1.00

3.75 1

Loss

3.50 A
3.25

3.00 A e ensadadadacn ol L

2.75 T

2.50 T T T T — 0.00 T T T T T
0 10 20 30 40 50 0 10 20 30 40 50
Consumed Tokens x10° Consumed Tokens x107

Figure 2: From OP to FOG-opt step by step. Comparison of 390M models under FP8DPA training.
The first architecture to diverge is OP, while OP with frozen QK RMSNorm gains survives the stable
phase of training. It still, however, experiences a significant divergence during the learning rate
cooldown, which starts around 42B tokens in. The architecture that converges, FOG-opt, is the
result of adding post-normalization to the previous recipe. Gradient norm reported is the 200-rolling-
window mean and 5%-95% quantile bands.

Figure [2] ablates the components transitioning from OP to FOG-opt. We can see that freezing
the trainable QK RMSNorm gains results in a significantly more stable training. We attribute the
early divergence of OP to the fact that uncontrolled QK normalization leads to an explosion of its
gains when training in low precision. Note that these gains are generally not weight-decayed. We
experimentally observe this explosion, confirm that using Lo regularization helps delay the divergence.
We finally opted for freezing the gains to a constant value as it is simpler and sufficient, doesn’t
compromise performance, and offers a small speedup. Our ablations highlight that a constant value
for the gains slightly greater than 1 improves loss. Therefore, to retain its benefit after removing the
-~ gains vector, we increase the standard s = 1/,/Dg, attention softmax scale—a tiny optimization
trick offering equivalent attention score matrix S:

__1 T 1 70Q 7K T_ 2 .
S—meo(Q)Nvo(K) _m<rms(Q)> (rms(K)) _\/D—qk/\fl(Q)./\ﬁ(K),

Finally, we empirically show that the addition of post-normalization is important to ensure conver-
gence with FPSDPA during the learning rate decay phase.

Prior works also favored post-normalization over pre-normalization [21], providing evidence of their
better stability in BF16 training. We extend this observation to our FP8 setting and we confirm that
learnable LayerScale blocks alone, even with controlled QK regularization, cannot ensure convergence
during this last phase. We attribute this late divergence of OP to the fact that LayerScale blocks
without normalizations are not enough to handle FP8 outliers, potentially due to the considerable
changes in model statistics following the learning rate decay, that are summed up in the residual
connections resulting in huge activation outliers for last layers, as highlighted by the increasing
pattern of outliers on each transformer block’s output in Figure (3] We note that we initially tested
the idea of cooling down the previously constant weight decay during the learning cooldown phase,
aiming to conserve model weights’ norm [[16]]. The Appendix |G|shows that such intervention has no
noticeable effect on stability neither performance. We chose to conserve this decision for all FOG
runs for consistency and fair comparison across ablations.

10°

10°

QKV Kurtosis

10t

T T T T
42 44 46 48 50 52
Consumed Tokens x10°

Figure 3: Kurtosis of QKYV tensors during FP8DPA learning rate cooldown with OP+frozenQK
architecture. Later layers exhibit significantly larger activation outliers.

4 Long-term outlier dynamics

To analyse the outliers present in neural network activations, we use kurtosis as a metric of the
extremity of deviations of activation values (such as by outliers). We define the kurtosis kurt(x) of a
vector x € RP as the scalar ,
pulx*]

kurt(x) := ——=-

() 0'2[X2]7
where 1 and o2 are the sample mean and variance, respectively, and exponentiation is taken element-
wise. Given an activation tensor X € RV*XC*D where N, C, and D are the batch size, se-
quence length, and hidden size respectively, we define its kurtosis as the average kurt(X) :=

N C
ﬁ Zn:l Zc:l kurt(xnc)°

Under this definition, kurt(x) is maximized when few elements of x reach extremely large values,
relative to the variance across the entire vector, i.e., when large outlier features are present. This
definition has been used to analyse outliers in BF16 training in previous work [9] and, unlike the
standard definition of kurtosis [22] in the probability theory literature, this definition does not center
x to have zero-mean. For our use, this is consistent with the fact that FP8 kernels do not shift their
inputs before scaling and casting down. We track the dynamics of kurtosis in key activations. Namely,
the inputs of the second projection in FFNs, the QKV matrix, and the output of each transformer
block. Unless explicitly stated, we report the average activation kurtosis across all layers.

Using these activations, we can analyse the emergence of large outlier features at different stages
during training. Figure[d]demonstrates an equivalent loss progression to the baseline while offering up
to orders of magnitude lower kurtosis in some activations. Note that, unlike previous FP8 approaches,
FOG architectures are trained with FP8 attention computations, introducing more quantization errors.
As a result, the kurtosis of key, query, and value projections becomes particularly relevant.

Activation Functions Baseline Llama exhibits late divergence during FP8 training (with attention
in BF16), which has been attributed solely to the quadratic behavior of its gated activation func-
tion—emerging when weights become sufficiently aligned late in training [6]. In our extended 450B
token run using the FOG-max architecture, we employ the inherently quadratic xIELU activation
function, see Equation (2)), and observe stable training with kurtosis levels orders of magnitude lower
than those of baseline Llama. In fact, modifying the FOG-max architecture to use the SwiGLU
activation function resulted in stable FP8DPA training behaviour, as disscussed in Appendix[D] These
results strongly suggests that architectures biased towards low kurtosis activations during training
enable the stable use of quadratic activations, and challenges the completeness of prior explanations.
This is particularly interesting given that such activations are known to produce linear gradients,
which benefit the backward pass—Ilikely contributing to FOG-max’s superior performance over
GeLU-based variants as seen in Section[3.3

Long-term outlier growth These architectures exhibit a sub-linear to logarithmic trend in the
long-term growth of QKV outliers, as consistently shown by kurtosis in Figure 4| This behavior

—— FOG-max Llama3

3.0 \

—
%)
1

QKV Kurtosis
(=2} oo
1 1

2.8

Loss

2.6

2.4+ 4 -

10° o

10*

FEFN Kurtosis

L
1 ~————
Transformer Kurtosis
=
wul

1(]3'; 9
z 10° 4

10! -; //—-——"w

T T T T T T
0 20 40 60 80 100 0 20 40 60 80 100
Consumed Tokens x107 Consumed Tokens x10°

10° o

10

Figure 4: Loss and kurtosis training dynamics of 1.5B FOG-max and Llama3 models trained for
over 100B tokens with BF16 precision. Loss reported is the 200-rolling-window mean and 5%-95%
quantile bands.

supports their robustness to FPSDPA, as it suggests that prohibitively longer training would be
required to see a substantial increase in kurtosis. Our extended run is consistent with the hypothesis

as it does not exhibit any sign of divergence.

Kurtosis early signal Figure[5]shows an example of a diverging FP8DPA run, comparing it with the
successful FOG-max training. This emphasises the importance of tracking tensor-level metrics such
as kurtosis to potentially predict later divergences, before common global metrics like the loss and
gradient norms show any symptoms of divergence. In this example, while loss irrefutably diverged
around the 15B token mark and the gradient norm consistently spiked no earlier than 12B tokens, the
QKYV kurtosis was already diverging from the expected sub-linear growth consistently seen across
different architectures as early as the 3B mark, giving a potential early divergence sign.

—— FOG-max OLMo2
4.00 2.0 10%
3.75
3.50 ©
5 325 B
z . a
-
3.00 L 101 4
[<
~ K o
s 2 S >
2.75 < 5
2.50 4
2.25 T T T T 100 T T T T T T T T
0 5 10 15 20 25 0 5 10 15 20 25 0 5 10 15 20 25
Consumed Tokens %107 Consumed Tokens x10° Consumed Tokens x10°

Figure 5: Training dynamics of a failed and a successful FPS8DPA run. Kurtosis exhibits atypical
behaviour much earlier than when the loss diverged. Gradient norm reported is the 200-rolling-
window mean and 5%-95% quantile bands.

5 Experimental Results

We perform extensive experiments to verify our architecture across several scales. We use the
FineWeb-Edu [23]] text corpus, filtering out any web opt-out domains with robots. txt, resulting
in a rigorous data-compliant corpus [5]. The data is tokenised using a 131K vocabulary BPE

tokenizer. We keep a consistent context length of 4096 during all main experiments. In terms of
the optimisation algorithm, we use AdamW [19] with default hyperparameters. Our learning rate
schedule is comprised of three phases: Warm-up, Steady, and Decay phases (WSD), as it has been
shown to provide equivalent performance to the cosine schedule [8]], while allowing to train beyond
fixed training durations. For the models, we train 390M, 1.5B and 8B parameter models for different
token counts, specified at each experiment. Our baseline architecture follows the Llama3 8B model
design [7], with the 390M and 1.5B being adapted to their respective sizes. Since Llama3 uses a
gated linear unit, unlike the OP and FOG variants, we increase the FFN sizes of OP and FOG to
maintain an equal parameter count. Further details regarding architectures and hyperparameters are
available in Appendices[A]and

Our hardware infrastructure consists of nodes with 4 Nvidia Grace Hopper GPUs each. Our dis-
tributed training framework is adapted from Megatron-LM [29], which uses Transformer Engine [2]]
FP8 recipes. With 390M parameters, our experiments reach 50B tokens. We scaled 1.5B experiments
to 125B tokens to obtain more meaningful evaluations. In addition to the absence of late-in-training
outlier amplification from FOG’s non-gated activation functions and our kurtosis progression guar-
antees, we further validate our method’s stability on long data regimes by continuing pretraining
FOG-max up to 450B tokens. Finally, we scale the model size to 8B and train for 20B tokens. We
show the divergence of other architectures with FPSDPA while FOG variants converge and match
the baseline Llama3 BF16 loss, while being 35-43% faster. During all experiments, we use the FP8
delayed scaling strategy, with a margin of zero and a history length of 1024 steps.

We make our implementation, along with detailed steps for our experiments, public under the
repository https://github. com/anonymous4375934/F0G.

5.1 FP8 stability

We compare our approach with different architectures proposed in the literature. Namely, the
OP architecture, OLMo2, Llama3, and Llama3 with the SmoothSwiGLU activation following the
previous work [6], adapting each network to 390M and 1.5B parameter count. In the case of the
Llama3 baseline, we also provide results on the 8B scale. Results are shown in Figure @ This
experiment displays the unsuitability of existing architectures for FP§DPA training, as all of them
diverge. For the case of the OP and OLMo?2 architecture, despite having an attention outlier-mitigation
strategy—the QK RMSNorm—divergence is still observed, as discussed in Section 3]

= FOG-max Llama3 = Llama3+SmoothSwiGLU opr OLMo2

390M Scale 1.5B Scale 8B Scale
10 —

N \‘\\

.“ S —

T T T T T T T T T
0.1 1 10 100 0.1 1 10 100 0.1 1 10 100
Consumed Tokens x10° Consumed Tokens x107 Consumed Tokens x10°

Figure 6: Cross-entropy loss plots of different architectures with FPSDPA training. No other
tested architecture was able to surpass the 20B token mark without diverging at any scale.

Another interesting observation from these experiments is the tendency of larger models to diverge in
later stages of training compared with similar but smaller models. We validate its consistency across
architectures, as presented in Table[2] This observation has not been raised before, possibly due to the
longer time needed for FP8 settings (with BF16 attention) to diverge, in contrast to FPSDPA training.
While this trend could have many practical implications, exploring it fully falls outside the scope of
this work, and we encourage future research in this direction.

https://github.com/anonymous4375934/FOG

Divergence Mark

Architecture Model Size (in billions of tokens)

Llama3 390M 0.7
Llama3 1.5B 1.1
Llama3 8B 6.6
OLMo2 390M 33
OLMo2 1.5B 159

Table 2: Token mark when loss was observed to diverge.

5.2 Efficiency

Standard context length Table [3| explores the efficiency of FOG at 1.5B and 8B model scales
under FP8DPA training, using a standard context length of 4096. We compare our set-up with the
BF16 baseline and the stable Llama FPS training with SmoothSwiGLU, which is, to the best of our
knowledge, the only dense architecture proposal demonstrated to work at scale with FP§. Note that
the SmoothSwiGLU cannot benefit from enabling FP§ GEMMs in the attention mechanism, as it was
shown to suffer a big loss divergence in Figure[] Note the increase in throughput gains as the model
size increases. The GEMM input tensors increase in size and consume significantly more time during
the overall forward-backward pass, compared with other operators.

Throughput

Size Model Precision (tokens/second/GPU)
Llama BF16 9105
Llama+SmoothSwiGLU FP8 12228 (+34.3%)

8B FOG-max FP8DPA 12344 (+35.5%)
FOG-opt FPSDPA 12414 (+36.3%)
FOG-flash FP8DPA 12764 (+40.2%)
Llama BF16 46470
FOG-max FPSDPA 53551 (+15.2%)

1.5B FOG-opt FPSDPA 53877 (+15.9%)
FOG-flash FPSDPA 54848 (+18.0%)
Llama+SmoothSwiGLU FP8 54903 (+18.1%)

Table 3: Training throughput measures with FOG versus other baselines. Using eight GH200
nodes with Zero-1 sharding [26] for 8B models and a single GH200 node for 1.5B models. Notably,
in the 8B scale, all FOG variants outperform other architectures.

Long-context scenario Enabling stable training under FP8DPA regime leads to great benefits in
long context scenarios, because the throughput becomes bottlenecked by the dot product attention
computation with quadratic complexity. As a result, we observe larger speed-up gaps between FOG
and prior FP8 approaches as sequence length increases, as demonstrated in Table]

Context FOG-flash Llama+SmoothSwiGLU | Speed-up Gap

4096 (TP=1) +42.6% +38.5% +4.1%
8192 (TP=1) +43.5% Out Of Memory -

8192 (TP=2) +39.1% +34.2% +4.9 %
16384 (TP=2) +38.8% +31.1% +7.7 %

Table 4: Training throughput gains under varying sequence lengths (relative to Llama BF16),
performed at 8B scale using 8 GH200 nodes with a global batch size of 1024. Increasing to longer
contexts required enabling Tensor Parallelism (TP). Raw throughput values reported in Table [TT]

5.3 Downstream performance

We compare our proposals with the higher-precision Llama3 baseline across a wide range of standard
benchmarks to measure their downstream performance. Inference during down-stream evaluation
uses BF16 precision. In Table[5] we report some of the most relevant scores along with an average
across a larger set of tasks, detailed in the Appendix [G] All FOG variants offer comparable down-
stream performance with the higher precision Llama3 baseline with FOG-max architecture, even
outperforming it. The 1.5B models are trained on 125B tokens, whereas smaller models are trained
on 50B tokens.

Model Hellaswag ARC PIQA Average*
Llama 3900M 33.5 | - 479 - 65.0 | - 398 -

FOG-max 3651363 629|625 68.0]|68.2 41.2]40.8
FOG-opt 36.1|35.6 61.5|613 68.0]67.8 409|404
FOG-flash 359352 615|604 68.1|68.2 40.5|40.3
Llama 1.5B 43.7 |- 71.8 |- 725 - 46.1 | -

FOG-max 433[434 716|730 72.6|733 46.0|47.1
FOG-opt 433]4277 713|708 726|720 45.7]46.0

FOG-flash 428|419 709|694 722|720 457|449

Table 5: Performance across various tasks. For each task and model size, the first score results
from the BF16 ablation and the second from the FP8DPA one. The average™ is across a larger set of
tasks, show in Appendix |G|

5.4 Long-data regimes

To further justify the viability of FP8DPA long training with FOG, we train a 1.5B FOG-max on 450B
tokens, way beyond the previously identified 200B tokens divergence mark of Llama2-7B [6]. Note
that our observation of smaller models’ tendancy to diverge earlier with FP8DPA, and the long-term
outlier analysis in Section [further underline the sufficiency of such a training duration.

We also switch to use FP16 optimizer states and BF16 gradients after 130B tokens, saving up memory
previously used by full precision states, gradients, and model parameters master copy. We display the
learning dynamics of our approach in Figure|/| The language modeling loss exhibits equivalent to
better smoothness compared to the corresponding Llama baseline.

—— FOG-max (FPSDPA) Llama3 (BF16)

T T T
0 100 200 300 400
Consumed Tokens x107

Figure 7: Long-data training regimes. FOG-max 1.5B FP8DPA is trained on 450B tokens. The
higher precision Llama3 experiment is included as reference. Note that a learning rate cooldown
is performed during the last 25B tokens of each experiment, following the WSD schedule. Loss
reported is the 200-rolling-window mean and 5%-95% quantile bands.

5.5 Additional results

SwiGLU This work mainly studies three architectural variants, sharing in common the use of
point-wise activation functions. As mentioned in Section @] we extended FOG to gated activation
functions by showing its stability when using a gated MLP (SwiGLU). Details in Appendix [D]

FP8 optimizer moments We ran an additional FPSDPA experiment using FOG-flash following the
same 390M scale setup but with 8 bit optimizer moments. The loss converged smoothly to a value of
2.645, nearly identical to the value 2.649 obtained with higher-precision moments. More details are
available in Appendix [E]

MoE We tested FOG under a Mixture-of-Experts (MoE) setting and the training was consistently
stable. This experiment further supports the robustness of FOG. More details can be found in

Appendix

6 Limitations

Despite its robustness, record throughput boosts, and flexibility, the FOG set of architectures remains
bounded by the following limitation. The final projection (LM head) is still performed in BF16.
This operator is known to be very sensitive to outliers and has been used with half-precision in
forward-backward FP8 training approaches, including ours. Due to computational constraints, we
decided to keep the study of this limitation for future work.

7 Conclusion

In this paper we demonstrate, for the first time, stable LLM training with fully FP8 matrix mul-
tiplications within the transformer blocks—including the attention mechanism—without sacrificing
performance. We tested FPSDPA training across a wide set of previously proposed architectures
and show that they consistently diverge early during training, highlighting the difficulty of FP§DPA
training and novelty in our results. Moreover, in contrast with other granular scaling recipes, we use
the low-overhead delayed scaling FP8 strategy. Our design provides on-par downstream quality with
the higher precision baseline, while offering up to 43% faster training at 8B scale. We scale our
1.5B model to 450B tokens, 15x the Chinchilla-optimal data budget for its size. Our work brings the
community one step closer to fully FP§ GEMM training at scale i.e including the language modeling
head. We further justify the long-term stability of our architecture by observing the outlier training
dynamics across key activations by using kurtosis. The use of kurtosis to track outliers present during
training was shown to provide meaningful insights to favour certain architectural components or to
predict future instabilities, as it is a quantitative metric that measures outliers.

10

Acknowledgement

This work was initiated during the master’s thesis of Alejandro Herndndez Cano at EPFL. It was
supported as part of the Swiss Al Initiative by a grant from the Swiss National Supercomputing
Centre (CSCS) under project ID a06 on Alps.

References

[1] Tom Brown, et al. Language Models Are Few-Shot Learners. In Advances in Neural Information
Processing Systems, volume 34, pages 1877-1901, 2020.

[2] NVIDIA Corporation. NVIDIA/TransformerEngine. URL https://github.com/NVIDIA/
TransformerEnginel

[3] DeepSeek-Al, et al. DeepSeek-V3 Technical Report. arXiv preprint, 2025. |doi:
10.48550/arXiv.2412.19437.

[4] Tim Dettmers, Mike Lewis, Younes Belkada, and Luke Zettlemoyer. GPT3.Int8(): 8-Bit
Matrix Multiplication for Transformers at Scale. In Advances in Neural Information Processing
Systems, volume 36, pages 30318-30332, 2022.

[5] Dongyang Fan, et al. Can Performant LLMs Be Ethical? Quantifying the Impact of Web
Crawling Opt-Outs. In Second Conference on Language Modeling, 2025.

[6] Maxim Fishman, Brian Chmiel, Ron Banner, and Daniel Soudry. Scaling FP8 Training to
Trillion-Token LLMs. In International Conference on Learning Representations, volume 2025,
pages 98631-98644, 2025.

[7] Aaron Grattafiori, et al. The Llama 3 Herd of Models. arXiv preprint, 2024. doi:
10.48550/arXiv.2407.21783.

[8] Alexander Higele, Elie Bakouch, Atli Kosson, Loubna B. Allal, Leandro Von Werra, and Martin
Jaggi. Scaling Laws and Compute-Optimal Training Beyond Fixed Training Durations. In
Advances in Neural Information Processing Systems, volume 38, pages 76232-76264, 2024.

[9] Bobby He, Lorenzo Noci, Daniele Paliotta, Imanol Schlag, and Thomas Hofmann. Under-
standing and Minimising Outlier Features in Transformer Training. In Advances in Neural
Information Processing Systems, volume 38, pages 83786-83846, 2024.

[10] Alex Henry, Prudhvi Raj Dachapally, Shubham Shantaram Pawar, and Yuxuan Chen. Query-Key
Normalization for Transformers. In Findings of the Association for Computational Linguistics:
EMNLP, volume 2020, pages 4246-4253, 2020. doi: 10.18653/v1/2020.findings-emnlp.379,

[11] Alejandro Hernandez-Cano, et al. Apertus: Democratizing Open and Compliant LLMs for
Global Language Environments. arXiv preprint, 2025. |doi: 10.48550/arXiv.2509.14233,

[12] Jordan Hoffmann, et al. Training Compute-Optimal Large Language Models. In Advances
in Neural Information Processing Systems, volume 36, pages 30016-30030, 2022. ISBN
978-1-7138-7108-8.

[13] Allen Hao Huang and Imanol Schlag. Deriving Activation Functions Using Integration. arXiv
preprint, 2025. doi: 10.48550/arXiv.2411.13010.

[14] Dhiraj Kalamkar, et al. A Study of BFLOAT16 for Deep Learning Training. arXiv preprint,
2019. ldoi: 10.48550/arXiv.1905.12322.

[15] Jared Kaplan, et al. Scaling Laws for Neural Language Models. arXiv preprint, 2020. doi:
10.48550/arXiv.2001.08361.

[16] Atli Kosson, Bettina Messmer, and Martin Jaggi. Rotational Equilibrium: How Weight Decay

Balances Learning Across Neural Networks. In International Conference on Machine Learning,
volume 41, pages 25333-25369, 2024.

11

https://github.com/NVIDIA/TransformerEngine
https://github.com/NVIDIA/TransformerEngine
http://dx.doi.org/10.48550/arXiv.2412.19437
http://dx.doi.org/10.48550/arXiv.2412.19437
http://dx.doi.org/10.48550/arXiv.2407.21783
http://dx.doi.org/10.48550/arXiv.2407.21783
http://dx.doi.org/10.18653/v1/2020.findings-emnlp.379
http://dx.doi.org/10.48550/arXiv.2509.14233
http://dx.doi.org/10.48550/arXiv.2411.13010
http://dx.doi.org/10.48550/arXiv.1905.12322
http://dx.doi.org/10.48550/arXiv.2001.08361
http://dx.doi.org/10.48550/arXiv.2001.08361

[17] Dmitry Lepikhin, et al. GShard: Scaling Giant Models with Conditional Computation and
Automatic Sharding. In International Conference on Learning Representations, volume 2021.
doi: 10.1145/3583780.3615068.

[18] Ze Liu, et al. Swin Transformer V2: Scaling Up Capacity and Resolution. In IEEE/CVF
Conference on Computer Vision and Pattern Recognition, volume 2022, pages 12009-12019,
2022.

[19] Ilya Loshchilov and Frank Hutter. Decoupled Weight Decay Regularization. In International
Conference on Learning Representations, volume 2019, 2019.

[20] Paulius Micikevicius, et al. FP8 Formats for Deep Learning. arXiv preprint, 2022. doi:
10.48550/arXiv.2209.05433.

[21] Team OLMo, et al. 2 OLMo 2 Furious. arXiv preprint, 2025. |doi: 10.48550/arXiv.2501.00656.

[22] Karl Pearson. "Das Fehlergesetz Und Seine Verallgemeiner-Ungen Durch Fechner Und
Pearson." a Rejoinder. Biometrika, 4(1-2):169-212, 1905. ISSN 0006-3444. |doi:
10.1093/biomet/4.1-2.169.

[23] Guilherme Penedo, et al. The FineWeb Datasets: Decanting the Web for the Finest Text Data at
Scale. In Advances in Neural Information Processing Systems, volume 38, pages 30811-30849,
2024.

[24] Houwen Peng, et al. FP8-LM: Training FP8 Large Language Models. arXiv preprint, 2023.
doi: 10.48550/arXiv.2310.18313.

[25] Qwen, et al. Qwen2.5 Technical Report. arXiv preprint, 2025. |doi: 10.48550/arXiv.2412.15115!

[26] Samyam Rajbhandari, Jeff Rasley, Olatunji Ruwase, and Yuxiong He. ZeRO: Memory Opti-
mizations Toward Training Trillion Parameter Models. In SC20: International Conference for
High Performance Computing, Networking, Storage and Analysis, volume 2020, pages 1-16,
2020. 'doi: 10.1109/SC41405.2020.00024.

[27] Bita Darvish Rouhani, et al. Microscaling Data Formats for Deep Learning. arXiv preprint,
2023. |doi: 10.48550/arXiv.2310.10537.

[28] Noam Shazeer. GLU Variants Improve Transformer. arXiv preprint, 2020. doi:
10.48550/arXiv.2002.05202.

[29] Mohammad Shoeybi, Mostofa Patwary, Raul Puri, Patrick LeGresley, Jared Casper, and Bryan
Catanzaro. Megatron-LM: Training Multi-Billion Parameter Language Models Using Model
Parallelism. arXiv preprint, 2020. doi: 10.48550/arXiv.1909.08053.

[30] Mingjie Sun, Xinlei Chen, J. Zico Kolter, and Zhuang Liu. Massive Activations in Large
Language Models. In First Conference on Language Modeling, 2024.

[31] Hugo Touvron, Matthieu Cord, Alexandre Sablayrolles, Gabriel Synnaeve, and Hervé Jégou.
Going Deeper with Image Transformers. In IEEE/CVF International Conference on Computer
Vision, volume 2021, pages 32—42, 2021. doi: 10.1109/ICCV48922.2021.00010.

[32] Ashish Vaswani, et al. Attention Is All You Need. In Advances in Neural Information Processing
Systems, volume 31, 2017.

[33] Lean Wang, Huazuo Gao, Chenggang Zhao, Xu Sun, and Damai Dai. Auxiliary-Loss-Free Load
Balancing Strategy for Mixture-of-Experts. arXiv preprint. doi: 10.48550/arXiv.2408.15664,

[34] Shuangfei Zhai, et al. Stabilizing Transformer Training by Preventing Attention Entropy
Collapse. In International Conference on Machine Learning, volume 40, pages 40770-40803,
2023.

[35] Jiachen Zhu, Xinlei Chen, Kaiming He, Yann LeCun, and Zhuang Liu. Transformers without
Normalization. In IEEE/CVF Conference on Computer Vision and Pattern Recognition, volume
2025, pages 14901-14911, 2025.

12

http://dx.doi.org/10.1145/3583780.3615068
http://dx.doi.org/10.48550/arXiv.2209.05433
http://dx.doi.org/10.48550/arXiv.2209.05433
http://dx.doi.org/10.48550/arXiv.2501.00656
http://dx.doi.org/10.1093/biomet/4.1-2.169
http://dx.doi.org/10.1093/biomet/4.1-2.169
http://dx.doi.org/10.48550/arXiv.2310.18313
http://dx.doi.org/10.48550/arXiv.2412.15115
http://dx.doi.org/10.1109/SC41405.2020.00024
http://dx.doi.org/10.48550/arXiv.2310.10537
http://dx.doi.org/10.48550/arXiv.2002.05202
http://dx.doi.org/10.48550/arXiv.2002.05202
http://dx.doi.org/10.48550/arXiv.1909.08053
http://dx.doi.org/10.1109/ICCV48922.2021.00010
http://dx.doi.org/10.48550/arXiv.2408.15664

A Hyperparameters

We detail the selection of hyperparameters used in Table [6] For the case of FOG-flash, the ayg
initialization value of tanh, entropy-regularization is 0.5 for all model sizes. All models use a
linear warmup schedule, and 1-sqrt cooldown schedule. The long-data 1.5B FOG-max experiment
was trained for a total of 430,000 steps, consuming approximately 450.9B tokens, using the same
hyperparameters as the shorter run, including warmup steps.

Hyperparameter 390M 1.5B 8B
Layers (L) 16 16 32
Hidden size (D) 1024 2048 4096
FFN hidden size 4096 8192 14336
Attention heads 8 16 32
QK groups 4 8 8
Softmax scale* (s) 0.17678 0.125

Tied embeddings Yes No

Weight decay (\) 0.1

AdamW 3 0.9

AdamW Sy 0.95

Gradient clip value 1.0

Context length T' 4096

Global batch size 128 256 512
Total training steps 100,000 125,000 10,000
Peak learning rate (n) 1073 2.5 x107* 1.5x 10~*
Warmup 7 steps 5,000 2,500 1,250
Cooldown 7 steps 20,000 25,000 N/A
Minimum 7 108

Table 6: Hyperparameters used in experiments. Note that FFN hidden size indicates the dimen-
sionality of each linear projection in gated activation functions; networks without GLUs use 1.5x
this value to match the parameter count. Softmax scale specified only applies to FOG models, all
other models follow the standard s = 1/,/Dgx.

B Architectures

We provide detailed formulations for all architectures presented in this paper. Our transformer
architecture consists of the following components in sequence:

. Input token embeddings

. An input scaling factor u € (0, 00), which may equal 1

. A series of L transformer blocks as described below

. A final normalization function N (i"2) | which may be the identity

D AW NN =

. A linear output layer

The transformer block is defined as

block(X) := X+ (Népost) o FFNo ngre>) (X), X=X+ (prost) o GQA o prfe>) (X).
The Ni(*) are normalization layers that may be the identity, and FFN(X) is a two-layer FEN with
a nonlinear activation function ¢ and no bias. The GQA follows the standard grouped-query self-

attention definition with softmax scaling factor s and Rotary Position Embeddings. Each attention
head uses the definition

attnhead(X) := selfattn (Ng?‘() (XW(@), N (xw KDy, XW<V>) :

13

where N () is the entropy-regularization mechanism, and selfattn = PV. The P matrix is the
attention probabilities matrix

P := Softmax (SQKT 4 M) (1

With this notation, Table [/|details the architecture families used in the project.

Parameter w N(inal) o p(pre) N (post) NQ@QK) o

Llama3 1 N Ny id id SwiGLU
Llama3+SmoothSwiGLU 1 N, N, id id SmoothSwiGLU
OLMo2 1 NS id Ny N, SwiGLU

op® oyt id id LayerScale, Ny, GeLU

FOG-max (®®) oyt id id Ny N xIELU
FOG-opt(®?) oyt id id Ny N GeLU
FOG-flash(®) oyt id id Ny tanh, GeLU

Table 7: Architecture details for the used models. Models with (a) initialize the post-normalization
gains with y5 = 1/ VL. Models with (b) have frozen gains in the QK entropy regularization N (QK),
The id is the identity function, oq is the chosen initialization standard deviation, N is the RMS
normalization. The u input scaling is not trainable.

xIELU activation function Introduced in [13]], the XIELU activation function is defined element-
wise as:
apz2 + 0.5z ifz >0,

an(e* = 1) —apz + 052 ifx <O0.

where «, and «, are trainable scalars per layer. xIELU is an extension of Squared ReLLU and has
been adopted and validated at scale [11]].

xIELU(z) := {)

C Outliers impact quantization

We begin with a useful definition.
r-outlier: Given x € R? and ¢ = rms(x), the element x of x is a T-outlier if |z| > 70.

As T increases, becomes a larger outlier (o represents the natural magnitude of x). In practice,
7 > 1. Before FP8 quantization, each tensor is scaled with s(x) := MaxFP8Value/absmax(x) to
better utilize limited FP8 dynamic range.

Theorem 1. Let x € R? have m-outlier xj, and x' € R4 have a T'-outlier x§ with 7' > T.
Then for any subset T C {1...d} \ j, vector x'r will be quantized less accurately than Xr.

In other words, larger outlier values lead to less precise FP8-quantized results.

C.1 Proof

Let r = FP8MaxValue, s = r/absmax(x), and s’ = s(x’).

Since absmax(x) > |z;| > 7o, then s < = (similarly, s’ < %
TO T O
m’ = absmax(x7.).

). Let m = absmax(xr) and

Elements of xp lie in [—m,m]. After scaling, the range becomes [—rm/(70),rm/(70)]
in sxp, and [—rm/(7'0),rm/(7'0)] in §'x}.. Since 77 > T, [—rm/(7'o),rm/(7'0)] C
[-rm/(T0),rm/(T0)], so X/ has smaller range.

This narrowed range contains fewer n-bit representable numbers, proving the theorem.

The proof applies to any subset 7', including the set of “typical” values (e.g., 90%-quantile).
Theorem [I] guarantees large outliers worsen quantization on 90% of tensor elements.

14

C.2 Empirical confirmation

We measured activation values of Llama and FOG-max 1.5B during mid-training on a micro batch of
data (precisely the second FFN layer’s input, before quantization).

Observation: Llama presents a 688-outlier while FOG-max shows only a 183-outlier. Using 90%-
quantile, we get that 90% of Llama’s activation coefficients scale to [—0.289, 0.289] range, while
FOG-max allows a much broader range of [—2.084, 2.984].

D FOG extensions

FOG-SwiGLU In addition to our main experiments, we trained a 1.5B FOG model using the
SwiGLU activation function, which we label FOG-SwiGLU. This architecture was adapted from
FOG-max, changing the activation function to SwiGLU and adjusting FFN hidden size to match
the parameter count. Figure [shows the loss progression of this model under FP8DPA training.
This experiment resulted in a completely stable training, and further demonstrates the flexibility of
activation functions suitable in our design.

—— FOG-max FOG-SwiGLU

2.9

T T T T
0 20 10 60 80 100 120
Consumed Tokens x10°

Figure 8: FOG-SwiGLU 1.5B FP8DPA run. FOG-max included as reference. We observe stable
training dynamics for both approaches. The reported loss is the 200-rolling-window mean and
5%-95% quantile bands.

MOoE extension We adapted FOG-flash architecture to follow an MoE design, keeping the backbone
configuration of the 390M model (hidden size, number of layers, etc), but upscaling with 8 FFN
experts (2 active) following [17]], resulting in a 1.8B model, trained from scratch under the same
configuration as all 390M models. Additionally, we employ the z-loss [[17] with coefficient of 0.01,
and no explicit loss-balancing loss, but rather an expert bias [33] with update rate of 0.01. We
trained this model under BF16 and FP8DPA training, resulting on a final converged loss of 2.477 and
2.483, respectively, as shown in Figure[9] This stable training result suggests good generalization
capabilities for FOG to other MoE designs under FPSDPA training. We further adapted our 1.5B
models and similarly scale up to 8 experts (2 active) to measure throughput gains at a larger scale.
Table [8] summarizes our results, where FOG still provides the most throughput gains.

.. Throughput
Model Precision (tokens/second/GPU)
Llama3 BF16 3336
Llama+SmoothSwiGLU FP8 4202 (+24.8%)
FOG-flash FP8DPA 4351 (+29.2%)

Table 8: MoE training throughput. Measurements of 41B-8E MoEs taken using 4xGH200 nodes
with expert parallel and pipeline parallel size of 4 using a batch size of 512. As with dense models,
FOG-flash outperform all other architectures.

15

—— BF16 FP8DPA

3.0 \

T T T T T
0 10 20 30 40 50
Consumed Tokens %107

Loss
o
o

1

Figure 9: FOG-flash-MoE 1.8B-8E FP8DPA loss progress. Both BF16 and FPSDPA trainings
are shown. The FP8DPA training remains stable for the entire duration of training, and the final
loss converged to in both precisions remains within £0.005, suggesting comparable downstream
capabilities. Loss reported is the 200-rolling-window mean and 5%-95% quantile bands.

E FP8 training

In all our experiments, we used Transformer Engine’s delayed scaling implementation with history
length ¢ = 1024 and margin m = 0. Mathematically, given a history of abs-max values, denoted
H = {h;}f_, C[0,00), of a tensor X, we define its scaling factor as:
FP8MaxValue
X)i=———
P(X) 2m max H
where FP8MaxValue € (0, c0) is the maximum value representable with the FP8 format used. We

update the history using H < {max,ex |z|} U {h:}¢_, to use for this activation in the next iteration.
The end-to-end FP8 matrix multiplication is

1
p(X)p(Y)

where FPS8GEMM receives FP8 tensors and returns the BF16 result. We further detail the precision
used for every matrix multiplication during our FP8 and FP8DPA experiments in Table 9]

GEMM(X,Y) := FPSGEMM/(FP8cast(p(X)X), FP8cast(p(Y)Y)),

Linear Attention scores Attention-value Output
Method P

operators QK' GEMM PV layer
FP8 FP8 BF16 BF16 BF16
FP8DPA FP8 FP8 FP8 BF16

Table 9: Comparison between FP8 methods. The FPSDPA method allows for all GEMM
computations—excluding the output head— to be done with FP8 precision. In contrast, FP§ training
uses higher precision for the core attention computation. The linear operators are linear layers of the
form Linearyy (X) = X'W: namely the FFN linear layers, QKV projections and attention output
projection. See Equation (1)) for the definition of the attention probability matrix P.

FP8 optimizer moments To further reduce memory usage, we tested FOG-flash under the usual
FP8DPA setting, with an additional constraint: FP8 optimizer moments. This extends the typical
setting of half-precision gradients and moments used in most of our experiments. Figure[I0|shows
the training loss across three different settings for comparison.

Fine-grained scaling recipes Recent FP8 training achievements, such as DeepSeek’s DeemGEMM
kernels, involve the use of fine-grained FP8 scaling recipes to provide a more robust training regime.
While these options could potentially enable FP8 training when tensor-wise scaling alternatives
diverge, it comes with a significant overhead. We validate this claim using TransformerEngine’s

16

— BF16 FPSDPA —— FP8DPA+FP8Optim

T T
0 10 20 30 10 50
Consumed Tokens x10°

Figure 10: FOG-flash 390M loss curve comparing training precision. Our design reaches similar

loss when trained with either precision. Loss reported is the 200-rolling-window mean.

Blockwise scaling at the 8B scale. Training throughput is reported in Table [I0] Using FPSDPA
training with delayed scaling recipe provides the highest boost across all tested methods.

Model Precision FP8 Recipe (toke?sl/rs(:é%)}rllrt)illl(t}PU)
Llama3 BF16 N/A 9.48k
Llama3 FP8 Blockwise 11.18k (+17.9%)
OP FP8 Delayed 12.14k (+28.1%)
Llama+SmoothSwiGLU FPS§ Delayed 13.1k (+38.2%)
FOG-flash FPSDPA Delayed 13.52k (+42.6%)

Table 10: Training throughput. Measurements taken using eight 4xGH200 nodes with Zero-1
sharding [26], without model parallelism using a batch size of 1024. Notably FOG-flash outperform
all other architectures.

F Long context

Note that when global batch size (GBS) increases —micro batch size fixed—, computation time
takes over communication time. Therefore, the larger the GBS, the higher the throughput gains
for all approaches: FOG-flash reaches +42.6% with GBS=1k compared to +40.2% with GBS=512.
Moreover, enabling FP8 computations in the attention bring unique throughput benefits under long-
context training. Hence the large efficiency gap achieved by FOG-flash FPSDPA compared to
Llama3+SmoothSwiGLU in Table [T1]

Context Length TP Llama3 (BF16) FOG-flash (FP8DPA) Llama3+SmoothSwiGLU (FP8)

4096 1 9.48K 13.52K 13.13K
8192 1 9.08K 13.03K Out Of Memory
8192 2 7.49K 10.42K 10.05K
16384 2 6.81K 9.45K 8.93K

Table 11: Training throughput under varying sequence lengths, performed at 8B scale using eight
4xGH200 nodes with a global batch size of 1024. TP refers to Tensor Parallelism.

G Evaluations

We selected the following set of benchmarks: ARC-Easy, CommonsenseQA, HellaSwag,
LAMBADA-OpenAI, LAMBADA-standard, OpenBookQA, PIQA, SocialIQA, and WinoGrande. We

17

used a standard open-source LLM evaluation package for conducting these evaluations, as cited in
the code repository https://github. com/anonymous4375934/F0G.

In Table 5] we report raw accuracy scores as percentages on three key benchmarks as well as the
average over the full set of tasks mentioned above. In Table[I2] we provide all scores along with their
estimation errors for the 1.5B model size, demonstrating that the slight differences observed across
many values are statistically insignificant.

Architecture Llama3 FOG-max FOG-opt FOG-flash

Hellaswag 437 — 433|434 43.3]42.7 428|419 0.5
ARC-easy 71.8] — 71.6|73.0 71.3|70.8 70.9|69.4 £0.9
PIQA 725|— 726|733 725|720 722|720 £1.0
Commonsense-qa 19.6 | — 20.2|22.2 19.3|21.2 21.1]|20.8 =+1.2
Lambada-openai 44.5| — 43.7]44.6 443445 424412 £0.7
Lambada-standard 38.9|— 37.0|39.5 37.7|379 359|338 +£0.7
Openbook-qa 262 — 28.0]27.0 268|270 284|276 £2.0
Social-iqa 413 | — 41.8|42.0 41.7]40.8 41.0|40.8 +1.1
Winogrande 56.5| — 55.6|58.7 54.6|57.4 56.9|56.8 £1.4
Average 46.1| — 46.0 471 45.7|46.0 457|449 +0.3

Table 12: More detailed results at 1.5B scale. For each model and each task, the first score results
from BF16 training and the second from FPSDPA training.

Weight decay cooldown As mentioned in Section 3| we experimented with cooling down the weight
decay, often used as a constant value equal to 0.1 that is coupled with the learning rate, to see if it
solves the OP+frozenQK architecture’s consistent divergence during the learning rate decay phase.
We also tested it on other architectures and, to optimize the use of resources, we had to keep it later
for the final experiments. This trick helped stabilize the weights’ norm indeed, but couldn’t solve the
divergence issue. Moreover, it had no effect on final performance nor on stability. Table[T3|highlights
this no-effect claim at 1.5B scale.

Setting WD Loss Average score

OP+FrozenQK cooldown diverges -
OP+FrozenQK constant diverges -
FOG-opt cooldown converges 46.0 £0.3
FOG-opt constant converges 46.3 £0.3

Table 13: Weight Decay (WD) during the LR decay phase. If constant, it equals 0.1. Else, it starts
from 0.1 and is proportional to LR.

H Computational Resources

Our experiments were conducted on nodes equipped with 4 Grace Hopper (GH200) GPUs each. We
typically used 4, 8, and 16 nodes for our 390M, 1.5B, and 8B parameter experiments, respectively,
with minor variations across different runs. Importantly, all throughput measurements were taken
under identical hardware configurations. Table |14{details the computational resources in GPU hours
(GPUh) required for our main experimental results. This includes the computational cost of training
all architectures that diverged during FPSDPA training, the FP8DPA and BF16 stable training runs for
our three main architectures, and the BF16 Llama3 baseline. The aggregation includes node start-up
times, computation lost due to node failures, and overhead from calculating and logging kurtosis
metrics. The complete research project required additional computational resources beyond those
specified in the table, as we conducted numerous preliminary experiments and explored ideas that did
not appear in the final paper.

18

https://github.com/anonymous4375934/FOG

Group GPUh

Divergent runs (FP8DPA) 886
Llama3 baselines (BF16) 1,395
FOG experiments 11,162

Table 14: GPU hours used for the main experiments.

19

	Introduction
	Background
	FOG: Fast and Outlier-Guarded FP8-suited architectures
	Long-term outlier dynamics
	Experimental Results
	FP8 stability
	Efficiency
	Downstream performance
	Long-data regimes
	Additional results

	Limitations
	Conclusion
	Hyperparameters
	Architectures
	Outliers impact quantization
	Proof
	Empirical confirmation

	FOG extensions
	FP8 training
	Long context
	Evaluations
	Computational Resources

