Session 8A: Towards Energy-efficient Machine Learning;:
Algorithm, Hardware and Computing Paradigm

GLSVLSI 21, June 22-25, 2021, Virtual Event, USA

Real-Time and Robust Hyperdimensional Classification

Alejandro Hernandez-Cano®, Cheng ZhuoV, Xunzhao Yin¥, Mohsen Imani®
*Universidad Nacional Auténoma de México, "bZhejiang University, TUniversity of California Irvine
Email: m.imani@uci.edu

ABSTRACT

Hyper-Dimensional computing (HDC) is a brain-inspired learning
approach for efficient and robust learning on today’s embedded
devices. HDC supports single-pass learning, where it generates
a classification model by one-time looking at each training data
point. However, the single-pass model provides weak classification
accuracy due to model saturation caused by naively accumulating
high-dimensional data. Although the retraining model for hundreds
of iterations addresses the model saturation and boosts the accuracy,
it comes with significant training costs. In this paper, we propose
OnlineHD, an adaptive HDC training framework for accurate, effi-
cient, and robust learning. During single-pass training, OnlineHD
identifies common patterns and eliminates model saturation. For
each data point, OnlineHD updates the model depending on how
similar it is to the existing model, instead of naive data accumulation.
We expand the OnlineHD framework to support highly-accurate
iterative training. We also exploit the holographic distribution of
patterns in high-dimensional space to make OnlineHD ultra-robust
against possible noise and hardware failure. Our evaluations on a
wide range of classification problems show that OnlineHD adap-
tive training provides comparable classification accuracy to the
retrained model while getting all efficiency benefits that a single-
pass training provides.
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1 INTRODUCTION

Hyper-Dimensional Computing (HDC) is introduced as an alter-
native computational model mimicking “the human brain” in the
functionality level [1-3]. HDC is based on the fact that the brain
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works with neural activities in high-dimensional space. It maps
data points into high-dimensional space and then perform a nearly-
linear training to learn a model. HDC is well suited to address
learning tasks for edge devices, as: (i) HDC models are computa-
tionally efficient and highly parallel at heart to train and amenable
to hardware level optimization [4-6], (ii) HDC models offer an in-
tuitive and human-interpretable model [7], (iii) it offers a complete
computational paradigm that can be applied to cognitive as well as
learning problems [8-10], and (iv) it provides strong robustness to
noise — a key strength for IoT systems [11-15].

Existing HDC algorithms are supporting single-pass training,
where learning can perform in by single time looking at each train-
ing data points [2, 16]. Although this approach enables fast and
real-time learning from a stream of data, it provides very weak clas-
sification accuracy. For example, for face recognition [17], single-
pass training can result in ~70% classification accuracy, which is
25% lower than state-of-the-art algorithms. To address this issue,
prior work introduced the idea of HDC iterative training, called
retraining (2, 18, 19]. Although retraining boosts HDC classifica-
tion accuracy to a similar level as the state-of-the-art, it removes
advantages that the HDC single-pass model provides. For example,
to support retraining, devices require to use large off-chip memory
to store all training samples.

We observe that the main limitation of the HDC single-pass train-
ing is coming from a naive data accumulating to generate each class
hypervector. This causes forgetting and saturation in each class hy-
pervector, where the pattern of common data dominates each class.
In this paper, we propose OnlineHD, an adaptive HDC training
framework for accurate, efficient, and robust learning. OnlineHD
supports single-pass training while ensuring accuracy comparable
to the retrained model.

e During single-pass training, OnlineHD identifies common pat-
terns in each class hypervector and eliminates model saturation.
For each data point, OnlineHD updates the model depending
on how similar is a data point to the existing model. For data
points with high similarity, OnlineHD gives very small weights
to them during the model update, while dissimilar data points
get higher weight depending on how far they are to the cur-
rent model. OnlineHD adaptive training provides comparable
accuracy to the retrained model while getting all benefits that a
single-pass model provides.

e OnlineHD framework also supports highly-accurate and effi-
cient iterative training. OnlineHD starts training from a well-
developed single-pass model, and in each iteration, it adaptively
updates the model based on the distance of each data to the
model. OnlineHD adaptive update ensures high classification
accuracy as well as fast converge, which is up to 29.6x faster
than state-of-the-art retraining approaches [2, 18].
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We evaluate OnlineHD efficiency on a wide range of classifica-
tion problems. Our evaluation shows that OnlineHD provides, on
average, 12.1% higher classification accuracy as compared to the
state-of-the-art HDC-based algorithm [16, 18] during single-pass
training. OnlineHD also provides better accuracy than the HDC-
based algorithms using iterative learning while converging with
13.1x lower number of iterations.

2 HYPER-DIMENSIONAL CLASSIFICATION

Figure 1 shows an overview of Hyper-Dimensional classification.

Encoding: The first step in HDC is to map each data points into
high-dimensional space. The mapping procedure is often referred
to as encoding (shown in Figure 1). HDC uses different encoding
methods depending on data types [16, 18]. The encoded data should
satisfy the common-sense principle: data points different from each
other in the original space should also be different in the HDC space.
For example, if a data point is entirely different from another, the
corresponding hypervectors should be orthogonal in the HDC space.
Assume an input vector (an image, voice, etc.) in original space
F= {fi, f2.- -+, fn} and F € R™. The encoding module maps this
vector into high-dimensional vector, H = {hy, hy,--- ,hp} € RD,
where D > n. The following equation shows an encoding method
that maps input vector into high-dimensional space:

hi = cos(F - B; + b;) sin(F - B;) 1)
where @ks are randomly chosen hence orthogonal base hypervec-
tors of dimension 9 = 10k to retain the spatial or temporal location
of features in an input and b; ~ U(0, 2rr). That is, ékj ~ N(0,1)
and 5(§k1, ékz) =~ 0, where § denotes the cosine similarity.

Single-pass Training: To find the universal property for train-
ing dataset, the trainer module linearly combines hypervectors
belonging to each class, i.e., adding the hypervectors to create a sin-
gle hypervector for each class. Once combining all hypervectors, we
treat per-class accumulated hypervectors, called class hypervectors,
as the learned model. Figure 1b shows HDC functionality during
single-pass training. Assuming a problem with k classes, the model
represents using: M = {61 G, 6k} For example, after gener-
ating all encoding hypervector of inputs belonging to class/label I,
the class hypervector C! can be obtained by bundling (adding) all
Hls. Assuming there are J inputs having label [: C! = Z}T 7‘(}

Inference: checks the similarity of each encoded test data with
the class hypervector in two steps. The first step encodes the input
(the same encoding used for training) to produce a query hypervec-
tor H. Then, as Figure 1 shows, we compute the similarity () of
H and all class hypervectors. Query data gets the label of the class
with the highest similarity.

Retraining: HDC classification using single-pass training pro-
vides poor classification accuracy. Recently, several work [2, 18]
showed the necessity of using iterative training, called retraining, in
order to improve HDC classification accuracy (shown in Figure 1).
Retraining can boost the HDC model’s accuracy by discarding the
mispredicted queries from corresponding mispredicted classes and
adding them to the right class. The retraining continues for multiple
iterations until the classification accuracy (over validation data) has
small changes during the last few iterations.
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Figure 1: HDC classification steps & single-pass training.

HDC retraining involves large number of iterations to converge.
Each iteration is computationally expensive as it requires both asso-
ciative search and model update. Our goal is to design a novel HDC
algorithm which can provide classification accuracy of iterative
and training efficiency of single-pass model at the same time.

3 ONLINEHD ADAPTIVE LEARNING

In HDC classification, the single-pass model does not well repre-
sent the entire dataset. The naive hypervector addition (explained
in Section 2) results in saturation of class hypervectors by data
points with the most common patterns. This saturation hides the
information of non-common patterns stored in class hypervectors.
For example, consider cat and dog binary classification problem.
HDC training crates two hypervectors; one representing cat and
one for dog. Lets assume training data consists of 80% of cat with
similar encoded patterns. This common pattern will dominate the
cat class and vanishes the pattern of non-common pattern in the
class hypervector. Due to model saturation, data points with non-
common patterns are likely to miss-classified by the model. This
retraining gives higher weight to data with a non-common pattern
to have a higher contribution to the final model. In other words, the
retraining is equivalent to giving higher weight to non-common
inputs in each class hypervector. In this paper, we explore the op-
portunity of giving weights to each data point during single-pass
training.

3.1 OnlineHD Single-Pass Training

We propose OnlineHD, an adaptive training framework for effi-
cient and accurate HDC learning. OnlineHD identifies common
patterns during training and eliminates the saturation of the class
hypervectors during single-pass training. Instead of naively com-
bining all encoded data, our approach adds each encoded data to
class hypervectors depending on how much new information the
pattern adds to class hypervectors. If a data point already exists
in a class hypervector, OnlineHD will add no or a tiny portion of
data to the model to eliminate hypervector saturation. If the pre-
diction matches the expected output, no update will be made to
avoid overfitting. Mathematically, OnlineHD adaptive learning is
equivalent to the retraining phase, as it provides a higher chance
and weight to non-common patterns to represent on the final model.
This advantage comes without paying the cost of iterative training.

Let’s assume H as a new training data point. OnlineHD com-
putes the cosine similarity of H with all class hypervectors. We
compute similarity of a data point with C; as: 5(7:?, C‘i). Instead
of naively adding data point to the model, OnlineHD updates the
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Figure 2: OnlineHD single-pass & adaptive iterative training.

model based on the § similarity. If an input data has label /, and the
most similar class was label I/, the model updates as follows.

C—C+n(1-8)xH
Cr—Cr—n(1-8)xH

where 7 is a learning rate. A large §; indicates that the input is a
common data point which is already exist in the model. Therefore,
our update adds a very small portion of encoded query to model to
eliminate model saturation (1 — §; ~ 0). However, small §; means
that the query has new pattern which does not exist in the model.
Thus, the model is updated with a larger factor (1 —J; ~ 1). Figure 3
shows OnlineHD classification accuracy during single-pass train-
ing. Our evaluation indicates that OnlineHD learns a much more
accurate model as compared to the baseline in the first training
iteration. OnlineHD advantage comes from its adaptive learning
that bolds the impact of all data points in the model, regardless of
their frequency and dominance in the model.

@)

3.2 OnlineHD Iterative Learning

Although single-pass training is suitable for fast and ultra-efficient
learning, embedded devices may have enough resources to perform
more accurate learning tasks. OnlineHD supports retraining to en-
hance the quality of the model. Instead of starting to retrain from
a naive initial model, OnlineHD retraining starts from the initial
adaptive model (explained in Section 3.1). OnlineHD initial model
already considered the weight of each input data during single-pass
training. Therefore, OnlineHD retraining starts from a well-trained
initial model with relatively high classification accuracy. This en-
ables OnlineHD to retrain the model with a much lower number of
iterations, resulting in fast convergence. Figure 2 shows OnlineHD
functionality during adaptive retraining. OnlineHD follows a sim-
ilar learning procedure as initial training. For each training data
point, say 731 OnlineHD checks the similarity of data with all class
hypervectors in the model (@) and updates the model for each
miss-prediction (@). Retraining examines if the model correctly
returns the label I for an encoded query H.If the model mispredicts
it as label I”, the model updates as follows (@ ).

C—C+n(1-8)xH

Cr—Cr-n(1-8)xH

®)

where 6; = 6(H, él) and 6y = 6(H, (j}/) are the similarity of data
with correct and miss-predicted classes, respectively. This ensures
that we update the model based on how far a train data point is
miss-classified with the current model. In case of of a very far miss-
prediction, §; < 0, OnlineHD retraining makes a major changes
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Figure 3: OnlineHD and baseline accuracy during retraining
iterations: (a) speech recognition, (b) activity recognition.

on the model. While in case of marginal miss-prediction, §; =~ 0,
the update makes smaller changes on the model. We also provide
separate coefficients for the true and miss-predicted labels, allowing
OnlineHD to update each class hypervector independently. Figure 3
shows the classification accuracy of OnlineHD and the baseline
HDC during different retraining iterations. Our evaluation indicates
that OnlineHD starts learning from higher accuracy using initial
adaptive learning. In addition, OnlineHD achieves maximum accu-
racy with a lower number of iterations as compared to the baseline.
Our adaptive retraining also enables HDC to provides higher final
accuracy as compared to the baseline HDC algorithm.

4 ONLINEHD ROBUSTNESS AND EFFICIENCY

The technological and fabrication issues in highly scaled technol-
ogy nodes add a significant amount of noise to both memory and
computing units [20, 21]. In addition, embedded devices are often
powered based on unreliable battery sources. All these issues result
in adding an extra computational error, which degrades the quality
of learning. Unfortunately, the existing ML algorithms have very
low robustness to noise in hardware. Deep neural networks (DNNss),
as the state-of-the-art machine learning algorithms, have very high
sensitivity to noise in hardware, especially during training. Earlier
work showed that, without enough bit precision, the model training
is likely to diverge or provide low accuracy [22] In DNNs, weights
represent using fixed-point or floating-point value. An error bit on
the exponents or Most Significant Bits (MSBs) results in a major
change in the weight value. This makes a traditional floating point
or fixed point representation vulnerable and sensitive to an error
on the hardware.

4.1 Hypervector Representation

One of the main advantages of OnlineHD is its high robustness
to noise and failure. In OnlineHD, hypervectors are random and
holographic with i.i.d. components. Each hypervector stores the
information across all its components so that no component is
more responsible for storing any piece of information than another.
This makes a hypervector robust against errors in its components.
OnlineHD efficiency and robustness depend on two parameters: (i)
the hypervector dimensionality that determines the hypervector
capacity and the level of redundancy, and (ii) the precision of each
hypervector element. Increasing dimensionality or precision of
elements results in improving the classification accuracy. However,
increasing dimensional results in an efficiency issue, while high
precision representation reduces the robustness.
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Figure 4: OnlineHD accuracy using binary or integer models.
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Figure 5: OnlineHD dimensionality, parallelism, and robust-
ness using different data representations.

In OnlineHD, the encoding module represents original data as a
pattern of vectors in high-dimensional space. The goal of this encod-
ing is to preserve the distance of data points in high-dimensional
space. The encoding maps original data, F € R" to D dimensional
vectors. The encoded hypervector can be represented using bi-
nary (7:? € {0,1}P) or non-binary values (7_:( € RP). OnlineHD
training and inference preserve the hypervector representation.
Using binary hypervector, OnlineHD generates binary class hy-
pervectors and uses Hamming distance as the similarity metric.
In contrast, using non-binary representation, OnlineHD training
generates a non-binary model and use cosine as a similarity metric.
OnlineHD with non-binary hypervector is equivalent to using ana-
log neurons [23], where each dimension gets a high precision value.
Figure 4 shows OnlineHD accuracy using binary and integer hyper-
vectors. Our results indicate that OnlineHD with integer elements
provides maximum accuracy in much lower dimensionality as com-
pared to using binary hypervector. For example, OnlineHD using
1-bit precision requires 6K < D < 8K dimensions for maximum
accuracy, while OnlineHD using 8-bit precision provides the same
accuracy on much lower dimensionality (D = 2 — 3K). We explore
impact of hypervector representation on OnlineHD robustness and
efficiency.

5 EVALUATION
5.1 Experimental Setup

The proposed OnlineHD framework has been implemented with
the two co-designed modules, software implementation and hard-
ware acceleration. In software, we verified the effectiveness of the
OnlineHD framework on large-scale learning problems. In hard-
ware, We implement OnlineHD training and testing on two embed-
ded platforms: FPGA and CPU. For FPGA, we design the OnlineHD
functionality using Verilog and synthesize it using Xilinx Vivado
Design Suite [24]. The synthesis code has been tested on the Kintex-
7 FPGA. For CPU, the OnlineHD code has been written in Python
and optimized for performance. The code has been implemented
on Raspberry Pi (RPi) 3B+ using ARM Cortex A53 CPU. Our code
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Table 1: Datasets (n: feature size, k: number of classes)

Train Test
n k Size Size Description
MNIST | 784 10 60,000 10,000 Handwritten Recognition[25]
UCIHAR | 561 12 6,213 1,554  Activity Recognition(Mobile)[26]
ISOLET | 617 26 6,238 1,559 Voice Recognition [27]
FACE 608 2 522,441 2,494 Face Recognition[17]
PAMAP | 75 5 611,142 101,582  Activity Recognition(IMU) [28]
PECAN |312 3 22290 5,574  Urban Electricity Prediction [29]
DNN [svm [JAdaBoost [ Baseline-HDC (single-pass)

[I[

-
o
o

Baseline-HDC (iterative) [l OnlineHD (single-pass) [[] OnlineHD (iterative)
20

ol 110 0T RO R R

“\“\5‘ “(;\\‘\P‘R \50\—€1 ?P\G‘a 9p.N\P‘? ‘,eGP‘“

Accuracy (%)
@
o

Figure 6: Comparing OnlineHD accuracy to state-of-the-art.

is available open-sourcel. We evaluate OnlineHD accuracy and
efficiency on six popular datasets, listed in Table 1.

5.2 OnlineHD Accuracy

State-of-the-art ML Algorithms: We compare OnlineHD classifi-
cation accuracy with state-of-the-art learning algorithms, including
Deep Neural Networks (DNN), Support Vector Machine (SVM), and
AdaBoost. The DNN models are trained with Tensorflow, and we
exploited the Scikit-learn library to train other ML algorithms [30].
Our evaluation shows that OnlineHD provides comparable accu-
racy to state-of-the-art algorithms.

State-of-the-art HDC Algorithms: Figure 6 compares OnlineHD
classification accuracy with state-of-the-art HDC algorithms [2, 16,
18]. The results are reported when OnlineHD and the baseline are
trained using a single-pass and iterative way using D = 10k. Our
evaluation shows that the existing HDC algorithms provide very
low classification accuracy during single-pass training. OnlineHD
address this issue by enabling adaptive training, which avoids HDC
model saturation. Over all tested applications, OnlineHD single-
pass model provides, on average, 12.1% higher classification ac-
curacy compared to the existing HDC algorithms. Interestingly,
OnlineHD single-pass accuracy is even 1.2% more accurate than
the costly baseline HDC algorithms with iterative training. Since
the initial model is already well-trained, the retraining has a lower
impact on OnlineHD accuracy. The results show that OnlineHD
iterative learning can improve accuracy by 3.0% as compared to a
single-pass model.

Partial Training: Figure 7 shows OnlineHD accuracy during
single-pass training when we train on a different portion of data.
Our evaluation indicates that OnlineHD achieves maximum ac-
curacy using a much lower portion of training data, while the
existing HDC algorithms achieve lower accuracy even using the
entire dataset. This makes a fast learner and suited for light-weight
embedded devices.

!https://gitlab.com/biaslab/onlinehd
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Figure 7: OnlineHD partial single-pass training.

5.3 OnlineHD Efficiency

We compare OnlineHD efficiency with DNN and the baseline HDC
during training and inference phase on FPGA. All results are re-
ported using binary vectors using dimensionality that both baseline
and OnlineHD provide comparable accuracy to DNN. FPGA imple-
mentations are optimized to maximize performance by utilizing
FPGA resources. During training, OnlineHD provides significantly
higher efficiency as compared to DNN and the baseline HDC. This
higher efficiency comes from OnlineHD capability in lowering the
number of required training iterations. The table in Figure 8a shows
the number of training iterations required by OnlineHD and the
baseline HDC. OnlineHD adaptive learning significantly reduces
the number of required iterations by 13.1x. In contrast, in baseline
HDC, the lack of suitable initial model and naive iterative training
increases the number of iterations. Compared to DNNs, OnlineHD
not only reduces the number of training iterations but also im-
proves the efficiency of a single training iteration. DNNs are using
costly gradient operations for training, while OnlineHD computa-
tion happens in highly efficient and parallel. As Figure 8a shows,
OnlineHD in single-pass further improves the training efficiency by
eliminating iterative learning. In this configuration, OnlineHD can
train a model with minimum data communications between mem-
ory and the computing units. Our evaluation shows that OnlineHD
iterative (single-pass) training provides 5.9x and 9.4X (17.1x and
28.7x) faster and higher energy efficiency than DNN.

Figure 8b also compares the OnlineHD inference efficiency with
the state-of-the-art. In HDC-based algorithms, i.e., OnlineHD and
baseline HD, the inference efficiency directly depends on the hyper-
vector dimensionality. Since OnlineHD and the baseline are using
the same dimensions, they provide the same inference efficiency.
This efficiency is higher than DNN as its computation relies on lim-
ited and costly DSPs on FPGA. In contrast, OnlineHD uses simple
bitwise operations, which can be accelerated using FPGA lookup
tables (LUTs). Our evaluation shows that OnlineHD provides 3.5x
faster and 6.9x higher energy efficiency than DNN.

5.4 Precision & Platform

We compare OnlineHD efficiency on two embedded platforms:
Raspberry Pi 3B+ using ARM CPU and Xilinx Kintex-7 FPGA. Ta-
ble 2 lists the number of required OnlineHD dimensions in each
bit precision that results in maximum classification accuracy. Ta-
ble 2 also reports the average Energy-Delay Product (EDP) of FPGA
and CPU running OnlineHD using different hypervector precision.
All results are normalized to CPU EDP using hypervectors with
32-bit precision. Our evaluation shows that the CPU provides the
highest efficiency using lower-dimensional vectors. This is because
CPUs are taking the same number of resources to perform 1-bit or
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Figure 8: OnlineHD efficiency vs. state-of-the-art.
Table 2: Impact of bit precision on CPU & FPGA efficiency

‘32-bits 16-bits  8-bits 4-bits 2-bits 1-bits

Dimensions (D) | 1.2K 20K 36K 56K 75K 88K
EDP CPU 1x 1.11x 1.83x  2.24X 3.1 4.02x
FPGA | 1290x 11.39x 691X 564X 408X  4.19x

8-bit arithmetic operations. This limits the amount of parallelism
in the CPU. In contrast, FPGAs are more efficient in processing
high-dimensional but low precision vectors. The lookup table and
flip-flops resources on FPGA can perform several parallel bitwise
operations and enable fast and efficient OnlineHD computation.
Our goal is to maximum FPGA throughput, where we can process
the maximum number of data points at a time. To eliminate off-
chip memory to be a bottleneck of computation, FPGA needs to
perform maximum computation over each read. We observe that
FPGA provides minimum EDP using 2-bit precision. In this pre-
cision, OnlineHD maximize FPGA resources while avoiding high
precision arithmetic, as the complexity FPGA arithmetic increase
exponentially with the bit-width.

5.5 Robustness to Noise

Table 3 compares DNN and OnlineHD computation robustness to
the noise in the hardware. For OnlineHD, the results are reported
using vectors with different precision. The dimensionality of the
vector is selected when OnlineHD provides maximum accuracy.
Our evaluation shows that OnlineHD provides significantly higher
robustness to noise as compared to DNN. In DNNs, the weights
are represented as 8-bit values; thus, an error can result in major
changes in the weights and classification accuracy. In OnlineHD,
information is stored as a holographic distribution of patterns in
high-dimensional space. In this representation, all dimensions are
equally contributing to storing information. Therefore, failures on
data only result in failure on a portion of each hypervector, not los-
ing the entire information. OnlineHD has maximum robustness us-
ing vectors with 1-bit precision, while this robustness reduces with
the increase in the precision. During 10% hardware error, OnlineHD
robustness is 8.5x and 3.8% higher than DNN and OnlineHD using
8-bit precision elements, respectively.

6 CONCLUSION

In this paper, we propose OnlineHD, an adaptive HDC training
framework for accurate, efficient, and robust learning. During single-
pass training, OnlineHD identifies common patterns and eliminates
model saturation. We expand OnlineHD to support highly-accurate
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Table 3: OnlineHD quality loss using noisy hardware

Hardware Error ‘ 1% 2% 5% 10% 15%
DNN 13.9% 94% 163% 264% 40.0%
1-bit | 0.0% 00% 09% 3.1% 5.2%
2-bits | 0.0% 04% 14% 47% 7.9%

OnlineHD !
nimne 4-bits | 0.3% 11% 26% 73% 11.9%
8-bits | 1.2% 37% 55% 12.4% 18.7%

iterative training. We also exploit the holographic distribution
of patterns in high-dimensional space to make OnlineHD ultra-
robust against possible noise and hardware failure. Our evaluations
show that OnlineHD provides comparable accuracy to the retrained
model while providing all efficiency benefits of a single-pass model.
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